Parameterization to NDDO-based polarizable force field
نویسندگان
چکیده
In Computer-Aided-Drug-Design (CADD), the electrostatic interactions contribute strongly to the interaction between the drug-molecule and the target. Further, the Coulomb term is crucial for calculating the electrostatic contribution to the solvation energy. In spite of this, conventional Force Fields use the obsolete physical concept of point-monopoles (net atomic charges) and thus, are not able to represent the molecular electrostatic potential (MEP) accurately or are even wrong for atoms that have positively and negatively charged areas on their surface [1]. A far better way to describe the MEP is the is multipole-based semiempirical MO-theory [2,3]. For the parameterization of the polarizable hpCADD Force Field, the two methods are combined in order to obtain both the MEP and structures and energies. Additionally, the differentiation of atom-types leads to more detailed information about the MEP.
منابع مشابه
Perturbative Approach to Calculating the Correlation Function of bi-isotropic Metamaterials
A bi-isotropic magneto-electric metamaterials is modeled by two independent reservoirs. The reservoirs contain a continuum of three dimensional harmonic oscillators, which describe polarizability and magnetizability of the medium. The paper aimed to investigate the effect of electromagnetic field on bi-isotropic. Starting with a total Lagrangian and using Euler-Lagrange equation, researcher cou...
متن کاملAn Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field.
An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model ...
متن کاملDeveloping the Polarizable Protein Force Field: Focus on Amino Acid Residues
Polarizable force field has been successfully used in molecular modeling for years, especially in biological and protein simulations. In this research thesis, development of a new polarizable force field ―POSSIM (POlarizable Simulations with Second order Interaction Model) involving electrostatic polarization is described and parameters for several protein residues were produced. In this resear...
متن کاملDevelopment of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model.
A polarizable force field for nucleic acid bases based on the classical Drude oscillator model is presented. Parameter optimization was performed to reproduce crystallographic geometries, crystal unit cell parameters, heats of sublimation, vibrational frequencies and assignments, dipole moments, molecular polarizabilities and quantum mechanical base-base and base-water interaction energies. The...
متن کاملQM/MM Molecular Dynamics Simulations of the Hydration of Mg(II) and Zn(II) Ions
The hydration of Mg and Zn is examined using molecular dynamics simulations using three computational approaches of increasing complexity: the CHARMM non-polarizable force field based on the TIP3P water model, the Drude polarizable force field based on the SWM4-NDP water model, and a combined QM/MM approach in which the inner coordination sphere is represented using a high quality density funct...
متن کامل